3.537 \(\int \frac {\sec ^3(c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx\)

Optimal. Leaf size=345 \[ -\frac {5 b \tan (c+d x)}{4 a^2 d \sqrt {a+b \cos (c+d x)}}-\frac {5 b \sqrt {\frac {a+b \cos (c+d x)}{a+b}} F\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{4 a^2 d \sqrt {a+b \cos (c+d x)}}-\frac {b^2 \left (7 a^2-15 b^2\right ) \sin (c+d x)}{4 a^3 d \left (a^2-b^2\right ) \sqrt {a+b \cos (c+d x)}}+\frac {b \left (7 a^2-15 b^2\right ) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{4 a^3 d \left (a^2-b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}+\frac {\left (4 a^2+15 b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \Pi \left (2;\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{4 a^3 d \sqrt {a+b \cos (c+d x)}}+\frac {\tan (c+d x) \sec (c+d x)}{2 a d \sqrt {a+b \cos (c+d x)}} \]

[Out]

-1/4*b^2*(7*a^2-15*b^2)*sin(d*x+c)/a^3/(a^2-b^2)/d/(a+b*cos(d*x+c))^(1/2)+1/4*b*(7*a^2-15*b^2)*(cos(1/2*d*x+1/
2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2)*(b/(a+b))^(1/2))*(a+b*cos(d*x+c))^(1/2)/
a^3/(a^2-b^2)/d/((a+b*cos(d*x+c))/(a+b))^(1/2)-5/4*b*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF
(sin(1/2*d*x+1/2*c),2^(1/2)*(b/(a+b))^(1/2))*((a+b*cos(d*x+c))/(a+b))^(1/2)/a^2/d/(a+b*cos(d*x+c))^(1/2)+1/4*(
4*a^2+15*b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticPi(sin(1/2*d*x+1/2*c),2,2^(1/2)*(b/(a+b)
)^(1/2))*((a+b*cos(d*x+c))/(a+b))^(1/2)/a^3/d/(a+b*cos(d*x+c))^(1/2)-5/4*b*tan(d*x+c)/a^2/d/(a+b*cos(d*x+c))^(
1/2)+1/2*sec(d*x+c)*tan(d*x+c)/a/d/(a+b*cos(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 1.08, antiderivative size = 345, normalized size of antiderivative = 1.00, number of steps used = 11, number of rules used = 10, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.435, Rules used = {2802, 3055, 3059, 2655, 2653, 3002, 2663, 2661, 2807, 2805} \[ -\frac {b^2 \left (7 a^2-15 b^2\right ) \sin (c+d x)}{4 a^3 d \left (a^2-b^2\right ) \sqrt {a+b \cos (c+d x)}}+\frac {b \left (7 a^2-15 b^2\right ) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{4 a^3 d \left (a^2-b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}+\frac {\left (4 a^2+15 b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \Pi \left (2;\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{4 a^3 d \sqrt {a+b \cos (c+d x)}}-\frac {5 b \tan (c+d x)}{4 a^2 d \sqrt {a+b \cos (c+d x)}}-\frac {5 b \sqrt {\frac {a+b \cos (c+d x)}{a+b}} F\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{4 a^2 d \sqrt {a+b \cos (c+d x)}}+\frac {\tan (c+d x) \sec (c+d x)}{2 a d \sqrt {a+b \cos (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^3/(a + b*Cos[c + d*x])^(3/2),x]

[Out]

(b*(7*a^2 - 15*b^2)*Sqrt[a + b*Cos[c + d*x]]*EllipticE[(c + d*x)/2, (2*b)/(a + b)])/(4*a^3*(a^2 - b^2)*d*Sqrt[
(a + b*Cos[c + d*x])/(a + b)]) - (5*b*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*b)/(a + b)]
)/(4*a^2*d*Sqrt[a + b*Cos[c + d*x]]) + ((4*a^2 + 15*b^2)*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticPi[2, (c +
 d*x)/2, (2*b)/(a + b)])/(4*a^3*d*Sqrt[a + b*Cos[c + d*x]]) - (b^2*(7*a^2 - 15*b^2)*Sin[c + d*x])/(4*a^3*(a^2
- b^2)*d*Sqrt[a + b*Cos[c + d*x]]) - (5*b*Tan[c + d*x])/(4*a^2*d*Sqrt[a + b*Cos[c + d*x]]) + (Sec[c + d*x]*Tan
[c + d*x])/(2*a*d*Sqrt[a + b*Cos[c + d*x]])

Rule 2653

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*Sqrt[a + b]*EllipticE[(1*(c - Pi/2 + d*x)
)/2, (2*b)/(a + b)])/d, x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2655

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2661

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, (2*b)
/(a + b)])/(d*Sqrt[a + b]), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2663

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 2802

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> -S
imp[(b^2*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n + 1))/(f*(m + 1)*(b*c - a*d)*(a^2 -
 b^2)), x] + Dist[1/((m + 1)*(b*c - a*d)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n
*Simp[a*(b*c - a*d)*(m + 1) + b^2*d*(m + n + 2) - (b^2*c + b*(b*c - a*d)*(m + 1))*Sin[e + f*x] - b^2*d*(m + n
+ 3)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] &
& NeQ[c^2 - d^2, 0] && LtQ[m, -1] && IntegersQ[2*m, 2*n] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !
(IntegerQ[2*n] && LtQ[n, -1] && ((IntegerQ[n] &&  !IntegerQ[m]) || EqQ[a, 0])))

Rule 2805

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2*EllipticPi[(2*b)/(a + b), (1*(e - Pi/2 + f*x))/2, (2*d)/(c + d)])/(f*(a + b)*Sqrt[c + d]), x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 2807

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist
[Sqrt[(c + d*Sin[e + f*x])/(c + d)]/Sqrt[c + d*Sin[e + f*x]], Int[1/((a + b*Sin[e + f*x])*Sqrt[c/(c + d) + (d*
Sin[e + f*x])/(c + d)]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && N
eQ[c^2 - d^2, 0] &&  !GtQ[c + d, 0]

Rule 3002

Int[(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)]))/((c_.) + (d_.)*sin[
(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[B/d, Int[(a + b*Sin[e + f*x])^m, x], x] - Dist[(B*c - A*d)/d, Int[(a +
 b*Sin[e + f*x])^m/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]
&& NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 3055

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*s
in[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp[((A*b^2 - a*b*B + a^2*C)*Cos[e +
 f*x]*(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n + 1))/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2)), x] + Dis
t[1/((m + 1)*(b*c - a*d)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[(m + 1)*(b
*c - a*d)*(a*A - b*B + a*C) + d*(A*b^2 - a*b*B + a^2*C)*(m + n + 2) - (c*(A*b^2 - a*b*B + a^2*C) + (m + 1)*(b*
c - a*d)*(A*b - a*B + b*C))*Sin[e + f*x] - d*(A*b^2 - a*b*B + a^2*C)*(m + n + 3)*Sin[e + f*x]^2, x], x], x] /;
 FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && Lt
Q[m, -1] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !(IntegerQ[2*n] && LtQ[n, -1] && ((IntegerQ[n] &&
  !IntegerQ[m]) || EqQ[a, 0])))

Rule 3059

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2)/(Sqrt[(a_.) + (b_.)*sin[(e_.) +
(f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> Dist[C/(b*d), Int[Sqrt[a + b*Sin[e + f*x]]
, x], x] - Dist[1/(b*d), Int[Simp[a*c*C - A*b*d + (b*c*C - b*B*d + a*C*d)*Sin[e + f*x], x]/(Sqrt[a + b*Sin[e +
 f*x]]*(c + d*Sin[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2
- b^2, 0] && NeQ[c^2 - d^2, 0]

Rubi steps

\begin {align*} \int \frac {\sec ^3(c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx &=\frac {\sec (c+d x) \tan (c+d x)}{2 a d \sqrt {a+b \cos (c+d x)}}+\frac {\int \frac {\left (-\frac {5 b}{2}+a \cos (c+d x)+\frac {3}{2} b \cos ^2(c+d x)\right ) \sec ^2(c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx}{2 a}\\ &=-\frac {5 b \tan (c+d x)}{4 a^2 d \sqrt {a+b \cos (c+d x)}}+\frac {\sec (c+d x) \tan (c+d x)}{2 a d \sqrt {a+b \cos (c+d x)}}+\frac {\int \frac {\left (\frac {1}{4} \left (4 a^2+15 b^2\right )+\frac {3}{2} a b \cos (c+d x)-\frac {5}{4} b^2 \cos ^2(c+d x)\right ) \sec (c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx}{2 a^2}\\ &=-\frac {b^2 \left (7 a^2-15 b^2\right ) \sin (c+d x)}{4 a^3 \left (a^2-b^2\right ) d \sqrt {a+b \cos (c+d x)}}-\frac {5 b \tan (c+d x)}{4 a^2 d \sqrt {a+b \cos (c+d x)}}+\frac {\sec (c+d x) \tan (c+d x)}{2 a d \sqrt {a+b \cos (c+d x)}}+\frac {\int \frac {\left (\frac {1}{8} \left (4 a^4+11 a^2 b^2-15 b^4\right )+\frac {1}{4} a b \left (a^2-5 b^2\right ) \cos (c+d x)+\frac {1}{8} b^2 \left (7 a^2-15 b^2\right ) \cos ^2(c+d x)\right ) \sec (c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx}{a^3 \left (a^2-b^2\right )}\\ &=-\frac {b^2 \left (7 a^2-15 b^2\right ) \sin (c+d x)}{4 a^3 \left (a^2-b^2\right ) d \sqrt {a+b \cos (c+d x)}}-\frac {5 b \tan (c+d x)}{4 a^2 d \sqrt {a+b \cos (c+d x)}}+\frac {\sec (c+d x) \tan (c+d x)}{2 a d \sqrt {a+b \cos (c+d x)}}-\frac {\int \frac {\left (-\frac {1}{8} b \left (4 a^4+11 a^2 b^2-15 b^4\right )+\frac {5}{8} a b^2 \left (a^2-b^2\right ) \cos (c+d x)\right ) \sec (c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx}{a^3 b \left (a^2-b^2\right )}+\frac {\left (b \left (7 a^2-15 b^2\right )\right ) \int \sqrt {a+b \cos (c+d x)} \, dx}{8 a^3 \left (a^2-b^2\right )}\\ &=-\frac {b^2 \left (7 a^2-15 b^2\right ) \sin (c+d x)}{4 a^3 \left (a^2-b^2\right ) d \sqrt {a+b \cos (c+d x)}}-\frac {5 b \tan (c+d x)}{4 a^2 d \sqrt {a+b \cos (c+d x)}}+\frac {\sec (c+d x) \tan (c+d x)}{2 a d \sqrt {a+b \cos (c+d x)}}-\frac {(5 b) \int \frac {1}{\sqrt {a+b \cos (c+d x)}} \, dx}{8 a^2}+\frac {\left (4 a^2+15 b^2\right ) \int \frac {\sec (c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx}{8 a^3}+\frac {\left (b \left (7 a^2-15 b^2\right ) \sqrt {a+b \cos (c+d x)}\right ) \int \sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}} \, dx}{8 a^3 \left (a^2-b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}\\ &=\frac {b \left (7 a^2-15 b^2\right ) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{4 a^3 \left (a^2-b^2\right ) d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}-\frac {b^2 \left (7 a^2-15 b^2\right ) \sin (c+d x)}{4 a^3 \left (a^2-b^2\right ) d \sqrt {a+b \cos (c+d x)}}-\frac {5 b \tan (c+d x)}{4 a^2 d \sqrt {a+b \cos (c+d x)}}+\frac {\sec (c+d x) \tan (c+d x)}{2 a d \sqrt {a+b \cos (c+d x)}}-\frac {\left (5 b \sqrt {\frac {a+b \cos (c+d x)}{a+b}}\right ) \int \frac {1}{\sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}}} \, dx}{8 a^2 \sqrt {a+b \cos (c+d x)}}+\frac {\left (\left (4 a^2+15 b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}}\right ) \int \frac {\sec (c+d x)}{\sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}}} \, dx}{8 a^3 \sqrt {a+b \cos (c+d x)}}\\ &=\frac {b \left (7 a^2-15 b^2\right ) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{4 a^3 \left (a^2-b^2\right ) d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}-\frac {5 b \sqrt {\frac {a+b \cos (c+d x)}{a+b}} F\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{4 a^2 d \sqrt {a+b \cos (c+d x)}}+\frac {\left (4 a^2+15 b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \Pi \left (2;\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{4 a^3 d \sqrt {a+b \cos (c+d x)}}-\frac {b^2 \left (7 a^2-15 b^2\right ) \sin (c+d x)}{4 a^3 \left (a^2-b^2\right ) d \sqrt {a+b \cos (c+d x)}}-\frac {5 b \tan (c+d x)}{4 a^2 d \sqrt {a+b \cos (c+d x)}}+\frac {\sec (c+d x) \tan (c+d x)}{2 a d \sqrt {a+b \cos (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 6.48, size = 597, normalized size = 1.73 \[ \frac {\sqrt {a+b \cos (c+d x)} \left (-\frac {7 b \tan (c+d x)}{4 a^3}+\frac {\tan (c+d x) \sec (c+d x)}{2 a^2}+\frac {2 b^4 \sin (c+d x)}{a^3 \left (a^2-b^2\right ) (a+b \cos (c+d x))}\right )}{d}-\frac {\frac {2 \left (4 a^3 b-20 a b^3\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} F\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{\sqrt {a+b \cos (c+d x)}}-\frac {2 i \left (7 a^2 b^2-15 b^4\right ) \sin (c+d x) \cos (2 (c+d x)) \sqrt {\frac {b-b \cos (c+d x)}{a+b}} \sqrt {-\frac {b \cos (c+d x)+b}{a-b}} \left (2 a (a-b) E\left (i \sinh ^{-1}\left (\sqrt {-\frac {1}{a+b}} \sqrt {a+b \cos (c+d x)}\right )|\frac {a+b}{a-b}\right )+b \left (2 a F\left (i \sinh ^{-1}\left (\sqrt {-\frac {1}{a+b}} \sqrt {a+b \cos (c+d x)}\right )|\frac {a+b}{a-b}\right )-b \Pi \left (\frac {a+b}{a};i \sinh ^{-1}\left (\sqrt {-\frac {1}{a+b}} \sqrt {a+b \cos (c+d x)}\right )|\frac {a+b}{a-b}\right )\right )\right )}{a \sqrt {-\frac {1}{a+b}} \sqrt {1-\cos ^2(c+d x)} \sqrt {-\frac {a^2-2 a (a+b \cos (c+d x))+(a+b \cos (c+d x))^2-b^2}{b^2}} \left (2 a^2-4 a (a+b \cos (c+d x))+2 (a+b \cos (c+d x))^2-b^2\right )}+\frac {2 \left (8 a^4+29 a^2 b^2-45 b^4\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \Pi \left (2;\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{\sqrt {a+b \cos (c+d x)}}}{16 a^3 d (b-a) (a+b)} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]^3/(a + b*Cos[c + d*x])^(3/2),x]

[Out]

-1/16*((2*(4*a^3*b - 20*a*b^3)*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*b)/(a + b)])/Sqrt[
a + b*Cos[c + d*x]] + (2*(8*a^4 + 29*a^2*b^2 - 45*b^4)*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticPi[2, (c + d
*x)/2, (2*b)/(a + b)])/Sqrt[a + b*Cos[c + d*x]] - ((2*I)*(7*a^2*b^2 - 15*b^4)*Sqrt[(b - b*Cos[c + d*x])/(a + b
)]*Sqrt[-((b + b*Cos[c + d*x])/(a - b))]*Cos[2*(c + d*x)]*(2*a*(a - b)*EllipticE[I*ArcSinh[Sqrt[-(a + b)^(-1)]
*Sqrt[a + b*Cos[c + d*x]]], (a + b)/(a - b)] + b*(2*a*EllipticF[I*ArcSinh[Sqrt[-(a + b)^(-1)]*Sqrt[a + b*Cos[c
 + d*x]]], (a + b)/(a - b)] - b*EllipticPi[(a + b)/a, I*ArcSinh[Sqrt[-(a + b)^(-1)]*Sqrt[a + b*Cos[c + d*x]]],
 (a + b)/(a - b)]))*Sin[c + d*x])/(a*Sqrt[-(a + b)^(-1)]*Sqrt[1 - Cos[c + d*x]^2]*Sqrt[-((a^2 - b^2 - 2*a*(a +
 b*Cos[c + d*x]) + (a + b*Cos[c + d*x])^2)/b^2)]*(2*a^2 - b^2 - 4*a*(a + b*Cos[c + d*x]) + 2*(a + b*Cos[c + d*
x])^2)))/(a^3*(-a + b)*(a + b)*d) + (Sqrt[a + b*Cos[c + d*x]]*((2*b^4*Sin[c + d*x])/(a^3*(a^2 - b^2)*(a + b*Co
s[c + d*x])) - (7*b*Tan[c + d*x])/(4*a^3) + (Sec[c + d*x]*Tan[c + d*x])/(2*a^2)))/d

________________________________________________________________________________________

fricas [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^3/(a+b*cos(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sec \left (d x + c\right )^{3}}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^3/(a+b*cos(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate(sec(d*x + c)^3/(b*cos(d*x + c) + a)^(3/2), x)

________________________________________________________________________________________

maple [B]  time = 2.39, size = 1542, normalized size = 4.47 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^3/(a+b*cos(d*x+c))^(3/2),x)

[Out]

-(-(-2*cos(1/2*d*x+1/2*c)^2*b-a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(2/a*(-1/2/a*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x
+1/2*c)^4*b+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)/(2*cos(1/2*d*x+1/2*c)^2-1)^2+3/4*b/a^2*cos(1/2*d*x+1/2*c)*(-2*si
n(1/2*d*x+1/2*c)^4*b+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)/(2*cos(1/2*d*x+1/2*c)^2-1)-1/8*b/a*(sin(1/2*d*x+1/2*c)^
2)^(1/2)*((2*cos(1/2*d*x+1/2*c)^2*b+a-b)/(a-b))^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4*b+(a+b)*sin(1/2*d*x+1/2*c)^2)^(
1/2)*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))+3/8/a*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*cos(1/2*d*x+1/2*c
)^2*b+a-b)/(a-b))^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4*b+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*b*EllipticE(cos(1/2*d*x+1
/2*c),(-2*b/(a-b))^(1/2))-3/8*b^2/a^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*cos(1/2*d*x+1/2*c)^2*b+a-b)/(a-b))^(1/2
)/(-2*sin(1/2*d*x+1/2*c)^4*b+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2)
)-1/2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*cos(1/2*d*x+1/2*c)^2*b+a-b)/(a-b))^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4*b+(a+
b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),2,(-2*b/(a-b))^(1/2))-3/8/a^2*(sin(1/2*d*x+1/2*c)
^2)^(1/2)*((2*cos(1/2*d*x+1/2*c)^2*b+a-b)/(a-b))^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4*b+(a+b)*sin(1/2*d*x+1/2*c)^2)^
(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),2,(-2*b/(a-b))^(1/2))*b^2)-2/a^3*b^3/sin(1/2*d*x+1/2*c)^2/(-2*sin(1/2*d*x+
1/2*c)^2*b+a+b)/(a^2-b^2)*(-2*sin(1/2*d*x+1/2*c)^4*b+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*((sin(1/2*d*x+1/2*c)^2)
^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a-
(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*b*EllipticE(cos(1/2*d*x+1/2*c
),(-2*b/(a-b))^(1/2))+2*b*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2)-2*b^2/a^3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*
cos(1/2*d*x+1/2*c)^2*b+a-b)/(a-b))^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4*b+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*Elliptic
Pi(cos(1/2*d*x+1/2*c),2,(-2*b/(a-b))^(1/2))-2/a^2*b*(-1/a*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4*b+(a+b)*
sin(1/2*d*x+1/2*c)^2)^(1/2)/(2*cos(1/2*d*x+1/2*c)^2-1)+1/2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*cos(1/2*d*x+1/2*c)
^2*b+a-b)/(a-b))^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4*b+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*
c),(-2*b/(a-b))^(1/2))-1/2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*cos(1/2*d*x+1/2*c)^2*b+a-b)/(a-b))^(1/2)/(-2*sin(1
/2*d*x+1/2*c)^4*b+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))+1/2/a*(si
n(1/2*d*x+1/2*c)^2)^(1/2)*((2*cos(1/2*d*x+1/2*c)^2*b+a-b)/(a-b))^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4*b+(a+b)*sin(1/
2*d*x+1/2*c)^2)^(1/2)*b*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))+1/2/a*b*(sin(1/2*d*x+1/2*c)^2)^(1/2)*
((2*cos(1/2*d*x+1/2*c)^2*b+a-b)/(a-b))^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4*b+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*Elli
pticPi(cos(1/2*d*x+1/2*c),2,(-2*b/(a-b))^(1/2))))/sin(1/2*d*x+1/2*c)/(-2*sin(1/2*d*x+1/2*c)^2*b+a+b)^(1/2)/d

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sec \left (d x + c\right )^{3}}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^3/(a+b*cos(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate(sec(d*x + c)^3/(b*cos(d*x + c) + a)^(3/2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {1}{{\cos \left (c+d\,x\right )}^3\,{\left (a+b\,\cos \left (c+d\,x\right )\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(cos(c + d*x)^3*(a + b*cos(c + d*x))^(3/2)),x)

[Out]

int(1/(cos(c + d*x)^3*(a + b*cos(c + d*x))^(3/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sec ^{3}{\left (c + d x \right )}}{\left (a + b \cos {\left (c + d x \right )}\right )^{\frac {3}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**3/(a+b*cos(d*x+c))**(3/2),x)

[Out]

Integral(sec(c + d*x)**3/(a + b*cos(c + d*x))**(3/2), x)

________________________________________________________________________________________